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Abstract
Activity and zymogram patterns of laccases produced by Pycnoporus cinnabarinus (HEMIM-79) grown in three systems
of submerged fermentation (airlift reactor, stirred tank reactor and Erlenmeyer flasks) and in solid-state fermentation using
polyurethane foam as inert support, were studied. A culture medium based in glucose, yeast extract and mineral salts
including copper sulfate as laccases inductor, was used in all grown systems. Very different activity levels were observed
depending on the growth system and in all cases the zymogram patterns were similar. So, in this strain, the number of
isoenzymes was independent of culture conditions but their amount changed, showing the highest values in the culture in
shake flasks followed by the solid-state fermentation, followed by stirred tank reactor and the lowest activity was observed
in airlift reactor. It is suggested that the difference in laccase activity could be due to the type of growth given in each
system, the pellets by their small size are the metabolically more active compared to the big mass produced in the airlift
reactor; although the stirred tank showed small pieces of mycelium, not showed an adequate growth by mechanical damage
to cells. In the case of solid culture, the fungus growth was in mycelium form which is similar to its natural habitat.
Keywords: airlift reactor, Erlenmeyer flasks, isoenzymes, laccases, solid-state fermentation, stirred tank reactor.

Resumen
Se obtuvo la actividad y los patrones zimográficos de lacasas producidas por Pycnoporus cinnabarinus (HEMIM-79)
crecido en tres sistemas de fermentación sumergida (reactor airlift, reactor de tanque agitado y matraces Erlenmeyer) y en
fermentación en estado sólido usando espuma de poliuretano como soporte inerte. En todos los sistemas se utilizó un medio
de cultivo con glucosa, extracto de levadura, sales minerales y sulfato de cobre como inductor de lacasas. Se observaron
diferentes niveles de actividad en función del sistema de crecimiento y en todos los casos los patrones de zimografı́a fueron
similares. Por lo tanto, en esta cepa, el número de isoenzimas fue independiente de las condiciones de cultivo, pero la
cantidad cambió, mostrando los valores más altos en el cultivo en matraz agitado, seguido de la fermentación en estado
sólido, luego del reactor de tanque agitado, la actividad más baja se observó en el reactor airlift. Se sugiere que la diferencia
en actividad de lacasa podrı́a deberse al tipo de crecimiento dado en cada sistema, siendo los pellets por su pequeño tamaño
los metabolicamente más activos en comparación con la gran masa producida en el reactor airlift y el tanque agitado aunque
mostró pequeños trozos de micelio, no hubo un adecuado crecimiento por el daño mecánico causado a las células. En el
caso del cultivo sólido, el hongo se desarrolló en forma de micelio el cual es lo mas parecido a su habitat natural.
Palabras clave: reactor airlift, matraces Erlenmeyer, isoenzimas, lacasas, fermentación en estado sólido, reactor de tanque
agitado.
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1 Introduction

Lignin is a complex and heterogeneous aromatic
biopolymer which provides strength to the wood
structure and protects it against microbial attack.
The most effective lignin degraders in nature are the
white-rot fungi which belong to the basidiomycetes
(Ander and Eriksson, 1978). Enzymes involved in
the degradation of lignin oxidize phenolic structures
and catalyze the generation of highly reactive
radicals that can also degrade non phenolic structures
(Boominathan and Reddy, 1992; Thurston, 1994).
The three classes of extracellular lignin modifying
enzymes generally recognized are lignin peroxidase,
Mn dependent peroxidase and laccase. White-
rot fungi produce one, two or the three of these
phenoloxidase enzymes and this appears to be a
feature among this group of fungi (Orth et al., 1993).
Laccase (ρ-diphenol: oxygen oxidoreductases) was
first demonstrated in the exudates of Rhus vernicifera,
the Japanese lacquer tree (Yoshida, 1883). Later it
was demonstrated in fungi (Bertrand, 1896). Laccases,
are either mono or multimeric copper-containing
oxidases that catalyze the reduction of oxygen to
water accompanied by the oxidation of a phenolic
substrates. Molecular oxygen serves as the terminal
electron acceptor and is thus reduced to two molecules
of water, as one electron oxidation of a substrate is
coupled to a four-electron reduction of oxygen, the
reaction mechanism cannot be straight forward. When
oxidized by a laccase, the reducing substrate loses
a single electron and usually forms a free radical
(Thurston, 1994).

Many laccase-producing fungi secrete isoforms of
the same enzyme (Leontievsky et al., 1997). These
isoenzymes have been found to originate from the
same or different genes encoding for the laccase
enzyme (Archibald et al., 1997). Some fungi produce
isoenzymes with similar Km and kcat values. In wood-
rotting basidiomycetes that are usually dikaryotic,
this fact probably indicates that allelic variability is
responsible for the production of isoenzymes rather
than the evolution of enzymes adapted to the special
needs of the fungus. The number of isoenzymes differs
between species and also within species depending on
whether they are induced or non-induced (Bertrand et
al., 2013). Isoenzymes can differ markedly in their
stability, optimal pH and temperature, and affinity for
different substrates (Babu et al., 2012).

There are multiple factors influencing laccase
production. Téllez-Téllez et al. (2005) reported the
laccase zymogram profiles of Pleurotus species using

various substrates, indicating that laccase isoforms
were specific for each species. The differences
observed in number and position of isoforms in the
gel, suggest that laccase zymograms might be a
way to differentiate species of this genus. In other
study, the cultures of Pleurotus ostreatus grown in
submerged fermentation produced laccase at 13,000
U L−1, with a biomass production of 5.6 g L−1 and
four laccase isoforms, however, cultures grown in
solid-state fermentation had a much lower laccase
activity of 2,430 U L−1, biomass production of 4.5
g L−1, and three laccase isoforms (Téllez-Téllez et
al., 2008). Dı́az et al. (2013) reported that the
initial pH of the growing medium is an important
factor for regulating the expression of laccase genes
which have an effect on the activity and number of
laccase isoenzymes produced by Pleurotus ostreatus
in submerged fermentation (SmF).

Guzmán (2003) considers that Pycnoporus
sanguineus is a tropical variant of Pycnoporus
cinnabarinus from the temperate zone, adapted to
man disturbed sites, where it is common in fallen
logs and fences, always in sunny places. It is
closely related species, Pycnoporus coccineus, and
Pycnoporus sanguineus. These fungi are recognized
as efficient lignin decomposers, in spite of its relatively
simple lignin modifying enzyme system composed of
laccases (Eggert et al., 1996). These features make
Pycnoporus species an attractive group of white-rot
basidiomycetes for the production and purification of
laccases.

2 Methods

2.1 Organism and culture conditions

Pycnoporus cinnabarinus (HEMIM-79) was
employed. The fungus was grown by triplicate in
four culture systems, solid-state fermentation (SSF)
and SmF in shake flasks, airlift reactor and stirred
tank reactor. For all culture systems, a liquid medium
containing in g L−1: glucose, 10; yeast extract, 5;
KH2PO4, 0.6; MgSO4 7H2O, 0.5; K2HPO4, 0.4;
CuSO4 5H2O, 0.25; FeSO4 7H2O; 0.05; MnSO4 H2O,
0.05; ZnSO4 7H2O, 0.001 was used (Téllez-Téllez et
al., 2008). The pH was adjusted at 6.5 using NaOH
0.1M.

The SSF was carried out in Erlenmeyer flask (250
mL) containing 1 g of polyurethane foam of low
density (PUF; 17 kg m−3) cubes (0.5 height x 0.5
width x 0.5 depth) (Diaz-Godinez et al., 2001) as an
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inert support impregnated with 30 mL of sterile culture
medium. Previously, the cubes were washed twice
with boiled distilled water and oven-dried (at 60°C)
for 24 h and then autoclaved at 15 psi for 15 min. The
SmF was undertaken in Erlenmeyer flasks (125 mL)
containing 50 mL of culture medium. All flasks were
inoculated with three mycelial plugs (4 mm diam)
taken from the periphery of a colony grown on PDA
at 25°C for 7 d. The cultures were incubated at 25°C
for 25 days on a rotary shaker at 120 rpm. Samples
were taken every 24 h after third day of growth. The
enzymatic extract (EE), was obtained from the SSF by
soft pressing the PUF cubes and from the shake flasks
was obtained by biomass retention, the broths were
filtrated using Whatman paper No. 4.

Fungus was also grown in SmF using a 3 L stirred
tank at propeller speed of 120 rpm and in 5.5 L airlift
bioreactor with an air flow of 1 vvm, in both at 75%
of their capacity with culture medium, Agitator speed
and aeration rates were kept constant over the whole
cultivation time. The reactors were inoculated with
mycelium of one colony per L of culture medium,
obtained from a Petri dish (100 x15 mm) with PDA
at 25°C for 7 d. The operation temperature was 25
°C. Five mL of culture medium considered as EE
was taken from 72 h after inoculation and then every
24 h. In both reactor cultures, was impossible to
directly quantify fungal growth. To indirectly measure
fungal growth, glucose disappearance from the culture
broth was quantified using a refractometer, and in both

cases, fermentation was stopped when the glucose
concentration was close to zero.

2.2 Enzyme assays

In each EE, the activity of laccases was evaluated
by changes in the absorbance at 468 nm, using 2,6-
dimethoxyphenol (DMP) as substrate. The assay
mixture contained 900 µL substrate (2 mM DMP in
0.1 M acetate buffer pH 4.5) and 100 µL EE, which
were incubated at 40 ºC for 1 min. One enzymatic unit
(U) of laccases activity was defined as the amount of
enzyme which gave an increase of 1 unit of absorbance
per min in the reaction mixture. The U L−1 values
were obtained as the mean ± standard deviation of
three replicates.

Fig 2 shows the laccase activity zymograms,
however, the activity obtained in the airlift reactor
was so low that it was not possible to observe the
isoenzymes in the gel. In the other cases, apparently
the isoenzymes are the same regardless of the
production system. It is suggested that the regulation
of the production of laccases from Pycnoporus
cinnabarinus is equal for the two isoenzymes and
only the amount produced is modified. It has been
reported that the composition of culture media induce
the synthesis of isoenzymes which show the same
activity but different physicochemical characteristics
(Téllez-Téllez et al., 2005; Castro et al., 2013).
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Fig. 1: Laccase activity of Pycnoporus cinnabarinus grown in SSF (a), SmF in shake flasks (b), stirred tank reactor
(c) and airlift reactor (d).
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Fig. 2: Zymogram patterns of laccases from Pycnoporus cinnabarinus produced in SSF (a), SmF in shake flasks (b)
and SmF in stirred tank reactor (c). Samples taken from 144-360 h.

There are reports on the existence of different
laccase isoenzymes and multiple genes that encode
them in various fungi (Yaver and Golightly, 1996;
Mansur et al., 1997; Smith et al., 1998; Giardina
et al., 1999). Garcı́a et al. (2006) reported two
laccase isoforms of Pycnoporus sanguineus produced
in submerged culture, their molecular masses were
80 kDa (Lac I) and 68 kDa (Lac II) after a partial
purification by phenyl-Sepharose chromatography. On
the other hand, laccases are regulated by several
factors such as pH, temperature, ions, presence of
inducers, etc. (Collins and Dobson, 1997; Muñoz et
al., 1997; Yaver et al., 1999). Copper has proven to
be an excellent inducer, increasing the transcription of
laccase genes (Collins and Dobson, 1997; Karahanian
et al., 1998; Palmieri et al., 2000; Soden and Dobson,
2001; Galhaup et al., 2002). In this study, the same
culture medium added of cupper was used in all
production systems. It has been reported on changes
in the composition of the culture medium favoring
increased production of laccases of fungi of the
Pycnoporus genus. Eugenio et al. (2009), reported the
effect of carbon and nitrogen sources on the activity of
laccase from Pycnoporus sanguineus. All carbon and
nitrogen sources showed an important influence on
laccase activity, where a sucrose-asparagine medium
reported 320 mU mL−1, but the laccase activity was
increased to 820 mU mL−1 using 5 times higher of
asparagine concentration. In other study, the presence
of 20 µM xylidine and low nitrogen amount increased

50 fold the laccases activity (1,368 U L−1) from
Pycnoporus sanguineus grown in submerged liquid
culture (Pointing et al., 2000).

A strain of Pycnoporus cinnabarinus produced
laccase up to 29,000 U L−1 in the presence of ferulic
acid as aromatic inducer. Two laccase isoenzymes
(LAC I and LAC II) encoded by two genes were
reported (Figueroa-Espinoza and Rouau, 1998). In
other study, ethanol increased the laccase activity
nine times than those of ferulic acid-induced cultures,
and 155 and 65 times than those of control cultures
(Herpoël et al., 2002). Previous reports have
demonstrated the production of two laccase isoforms
(LacI and LacII) by Pycnoporus sanguineus under
different conditions (Garcia et al., 2006; Dantán-
González et al., 2008; Lu et al., 2008; Vite-Vallejo
et al., 2009). Ramı́rez-Cavazos et al. (2014a)
purified two laccases by ultrafiltration, ion exchange
and hydrophobic interaction chromatography. The
molecular weights of LacI and LacII, determined
by SDS-electrophoresis, were 68 and 66 kDa,
respectively. Ramı́rez-Cavazos et al. (2014b) reported
the production of thermostable laccases from a native
strain of the white-rot fungus Pycnoporus sanguineus
isolated in Mexico, the activity was enhanced by
testing different media and a combination of inducers
including copper sulfate (CuSO4). The best conditions
obtained from screening experiments in shake flasks
using tomato juice, CuSO4, and soybean oil were
integrated in an experimental design. Enhanced levels
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of tomato juice as the medium, CuSO4 and soybean
oil as inducers (36.8% v/v, 3 mmol L−1, and 1% v/v,
respectively) were determined for 10 L stirred tank
bioreactor runs. This combination resulted in laccase
titer of 143 000 U L−1 with ABTS (2,2’-azino-bis(3-
ethylbenzthiazoline-6- sulfonic acid) as substrate at
pH 3.0.

In this work laccase activity was determined with
2,6 DMP a phenolic compound. Some laccases
activity give higher results when evaluated with
nonphenolic substrates such as ABTS (More et
al., 2011). On the other hand, thirty strains of
Pycnoporus coccineus and Pycnoporus sanguineus
from subtropical and tropical environments, mainly
isolated from fresh specimens collected in situ, were
screened for laccase activity. On the basis of levels of
enzyme activity and percentage of similarity between
protein sequences, the laccases from three strains
(BRFM 938, BRFM 66 and BRFM 902) were selected
for purification and characterization. Each laccase
gene of those strains encoded a predicted protein
of 518 amino acids; the three deduced proteins
showed 68-97% similarity with other Polyporale
laccases. The laccases showed a molecular weigth
of 59-62 kDa with 7-10% carbohydrate content,
remained highly stable up to 75-78°C and at pH
5-7 mixtures, and were resistant to methyl and
ethyl alcohols, acetonitrile and dimethylsulfoxide at
concentrations as high as 50% (v/v). The best laccase-
1- hydroxybenzotriazole systems permitted almost
100% of various polyphenolic dye decolourization and
oxidation of adlerol and veratryl alcohol (Uzan et al.,
2010).

Recently was reported the secuence of a laccase
gene of Pleurotus ostreatus called LacP83 and its
promoter region (466 bp upstream of ATG) contains
putative binding transcription factors such as metal
response element, xenobiotic response element, a
defense response element, and a stress response
element (Téllez-Téllez et al., 2012a). Then, it is
possible that differences in laccases activity observed
between the production systems is due to stress that
the cells presented in each culture system. There
is a difference in the amount of dissolved oxygen
between the SSF and all SmF´s, also in this last, exist
mechanical stress caused by agitation and/or aeration
which produced different types of fungus morphology.
In the SSF, the PUF cubes used, were of low density,
with high water retention (30 mL g−1 PUF; Dı́az-
Godı́nez et al., 2001), which allowed the mycelial
growth of the fungus forming networks of very small
thickness (less than 1 mm), on the other hand, it is

known that the solubility of oxygen in air is about 298
mg L−1 and it has been reported that the KLa value in
similar SSF was of approximately 0.344 s−1 (Thibault
et al., 2000), whereas the solubility of oxygen in
water is very low (Estela-Escalante et al., 2012),
about 30 times less than in air (8.11 mg L−1 at room
temperature), and KLa values are reported up to 0.04
s−1 for shake flask (Maier et al., 2004), up to 0.158 s−1

in stirred tank reactor (Flores et al., 1997) and up to
0.04 s−1 in airlift reactor (Merchuk and Siegel, 1988);
in shake flasks, the biomass was produced in pellets
form that can measure up to 2 cm in diameter, on the
other hand, in the stirred tank a very large mechanical
stress caused the disintegration of mycelium during
the fungus growth with size particle of about 0.5 cm
and in the airlift reactor a big static mass fixed to
along the concentric tube on the outside was observed.
Based on the above may suggest that the SSF is a
system with greater availability of oxygen that allows
fungus growth similarly to its natural environment, in
this study was reported a X of 5.66±0.3 g L−1 at 15
days of culture and the laccases yield according to the
produced biomass (Y) was of 9,081 U g−1X, while in
the shake flask was reached a X of 5.60±0.2 g L−1

at 12 days of culture, the stirred tank produced an X
of 1.60±0.2 g L−1 and the airlift reactor showed an
X of 3.50±0.4 g L−1, both was observed at 15 days
of culture and the Y values in shake flask, stirred
tank and airlift reactor were 19,821, 18,750 and 85
U g−1X, respectively. In this case it is suggested
that the small pellets with large surface area are more
productive than the great mass of mycelium with little
surface area obtained in the airlift reactor, where the
anoxic zone formed is related to the size of the biomass
agregation (Ortega-Sánchez et al., 2012), since there is
higher proportion of metabolically active cells in the
pellets than in the big biomass. Although the amount
of laccase produced in stirred tank was approximately
one third of that observed in shake flasks, the Y values
were similar, indicating that in the stirred tank occurs
greater mechanical damage to cells impeding proper
growth and the amount laccase is related to the X
produced.

Conclusion

The growth system determines laccase activity levels
of Pycnoporus cinnabarinus, being the liquid culture
in shake flasks the best, two isoenzymes of laccase
were produced by whatever growth system of the
fungus. It is recommended, to make studies on the
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stirring rate in the flasks and reactor as well as the
air flow in the airlift reactor, to increase the activity,
considering the conditions of the culture medium such
as the C/N ratio, the pH, working volume, agitation
speed and the incubation temperature.
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